Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Nanotechnol ; 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38740936

RESUMO

Diabetic foot ulcers often become infected, leading to treatment complications and increased risk of loss of limb. Therapeutics to manage infection and simultaneously promote healing are needed. Here we report on the development of a Janus liposozyme that treats infections and promotes wound closure and re-epithelialization. The Janus liposozyme consists of liposome-like selenoenzymes for reactive oxygen species (ROS) scavenging to restore tissue redox and immune homeostasis. The liposozymes are used to encapsulate photosensitizers for photodynamic therapy of infections. We demonstrate application in methicillin-resistant Staphylococcus aureus-infected diabetic wounds showing high ROS levels for antibacterial function from the photosensitizer and nanozyme ROS scavenging from the liposozyme to restore redox and immune homeostasis. We demonstrate that the liposozyme can directly regulate macrophage polarization and induce a pro-regenerative response. By employing single-cell RNA sequencing, T cell-deficient Rag1-/- mice and skin-infiltrated immune cell analysis, we further reveal that IL-17-producing γδ T cells are critical for mediating M1/M2 macrophage transition. Manipulating the local immune homeostasis using the liposozyme is shown to be effective for skin wound repair and tissue regeneration in mice and mini pigs.

2.
Fitoterapia ; 175: 105947, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38570097

RESUMO

Employing an MS/MS-based molecular networking-guided strategy, three new eudesmane-type sesquiterpenes (1-3) and one undescribed pseudoguaianolide sesquiterpene (8), along with four known eudesmane-type sesquiterpene lactones (4-7) were extracted and purified from the herbs of Carpesium abrotanoides L. Structural elucidation encompassed comprehensive spectroscopic analysis, NMR calculations, DP4+ analysis, and ECD calculations. The cytotoxicity activity of all isolates was evaluated against two human hepatoma carcinoma cells (HepG2 and Hep3B) in vitro. It was demonstrated that compounds 2 and 4 showed moderate cytotoxic against HepG2 and Hep3B cells. Furthermore, all compounds were evaluated for their acetylcholinesterase (AChE) inhibitory activity. Particularly noteworthy is that, in comparison to the positive control, compound 1 demonstrated significant AChE inhibition with an inhibition rate of 77.86%. In addition, the inhibitory mechanism of compound 1 were investigated by in silico docking analyze and molecular dynamic simulation.

3.
J Asian Nat Prod Res ; : 1-12, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38529763

RESUMO

Guiding by LC-MS/MS analysis and the Global Natural Products Social (GNPS) Molecular Networking, three undescribed sesquiterpenoids, stedapgens A-C, and two known analogues were discovered in the barks of Daphne genkwa Sieb. et Zucc. The structures were determined by analysis of their spectroscopic data and quantum-chemical calculations. All the isolated novel compounds were tested for their acetylcholinesterase inhibitory activities with IC50 = 0.754 ± 0.059, 0.696 ± 0.026, and 0.337 ± 0.023 µg/ml. Among them, stedapgen A displayed promising inhibitory activities against AChE, and the binding sites were predicted by molecular docking.

4.
J Leukoc Biol ; 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38193891

RESUMO

T-helper 17 (Th17) cells play a dual role in immunological responses, serving as essential components in tissue homeostasis and host defense against microbial pathogens while also contributing to pro-inflammatory conditions and autoimmunity. While Transforming Growth Factor-beta 1 (TGFß1) is pivotal for the differentiation of non-pathogenic Th17 cells, the role of TGFß3 and Activin in steering Th17 cells toward a pathogenic phenotype has been acknowledged. However, the molecular mechanisms governing this dichotomy remain elusive. In this study, we demonstrate that the transcription factor Foxo1 is upregulated in a TGFß1 dose-dependent manner, serving as a critical regulator that specifically modulates the fate of pathogenic Th17 cells. Analyses in both uveitis patients and an Experimental Autoimmune Uveitis (EAU) mouse model reveal a strong correlation between disease severity and diminished Foxo1 expression levels. Ectopic expression of Foxo1 selectively attenuates IL-17A production under pathogenic Th17-inducing conditions. Moreover, enhanced Foxo1 expression, triggered by TGFß1 signaling, is implicated in fatty acid metabolism pathways that favor non-pathogenic Th17 differentiation. Our drug screening identifies several FDA-approved compounds can upregulate Foxo1. Collectively, our findings offer evidence that Foxo1 serves as a molecular switch to specifically control pathogenic versus non-pathogenic Th17 differentiation in a TGFß1-dependent manner. Suggest that targeting Foxo1 could be a promising therapeutic strategy for autoimmune diseases.

5.
J Immunol ; 211(5): 874-884, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37459052

RESUMO

Intestinal epithelial cells (IECs) at the internal/external interface orchestrate the mucosal immune response, and IEC dysfunction has been linked to multiple inflammatory diseases, including inflammatory bowel disease. In this study, we found that a member of the TNF-α-induced protein 8 (TNFAIP8 or TIPE) family called TIPE1 is indispensable for maintaining epithelial cell barrier integrity and homeostasis under inflammatory conditions. TIPE1-deficient mice, or chimeric mice that were deficient in TIPE1 in their nonhematopoietic cells, were more sensitive to dextran sulfate sodium-induced experimental colitis; however, TIPE1 deficiency had no impact on the development of inflammation-associated and sporadic colorectal cancers. Mechanistically, TIPE1 prevented experimental colitis through modulation of TNF-α-dependent inflammatory response in IECs. Importantly, genetic deletion of both TIPE1 and its related protein TNFAIP8 in mice led to the development of spontaneous chronic colitis, indicating that both of these two TIPE family members play crucial roles in maintaining intestinal homeostasis. Collectively, our findings highlight an important mechanism by which TIPE family proteins maintain intestinal homeostasis and prevent inflammatory disorders in the gut.


Assuntos
Colite , Doenças Inflamatórias Intestinais , Animais , Camundongos , Colite/induzido quimicamente , Colite/genética , Sulfato de Dextrana/toxicidade , Células Epiteliais/metabolismo , Inflamação/metabolismo , Doenças Inflamatórias Intestinais/metabolismo , Mucosa Intestinal , Camundongos Endogâmicos C57BL , Fator de Necrose Tumoral alfa/metabolismo
6.
Cell Death Dis ; 13(4): 311, 2022 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-35387985

RESUMO

Tumor necrosis factor-α-induced protein 8 (TNFAIP8 or TIPE) is a member of the TNFAIP8 family. While TIPE was broadly considered to be pro-cancerous, its precise roles in carcinogenesis especially those of the intestinal tract are not clear. Here, we show that genetic deletion of TIPE in mice exacerbated chemical-induced colitis and colitis-associated colon cancer. Loss of TIPE exacerbated inflammatory responses and inflammation-associated dysbiosis, leading to the activation of NF-κB and STAT3, and it also accelerated dysplasia, DNA damage and proliferation of intestinal epithelial cells. We further show that colon microbiota were essential for increased tumor growth and progression in Tipe-/- mice. The tumor suppressive function of TIPE originated primarily from the non-hematopoietic compartment. Importantly, TIPE was downregulated in human colorectal cancers, and patients with low levels of Tipe mRNA were associated with reduced survival. These results indicate that TIPE serves as an important modulator of colitis and colitis-associated colon cancer.


Assuntos
Neoplasias Associadas a Colite , Colite , Animais , Proteínas Reguladoras de Apoptose/metabolismo , Carcinogênese/genética , Carcinogênese/metabolismo , Transformação Celular Neoplásica/metabolismo , Colite/induzido quimicamente , Colite/complicações , Colite/genética , Humanos , Inflamação/genética , Inflamação/metabolismo , Camundongos , Camundongos Endogâmicos C57BL
7.
Cancer Immunol Res ; 10(3): 354-367, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35101901

RESUMO

Although increasing evidence links the gut microbiota with the development of colorectal cancer, the molecular mechanisms for microbiota regulation of tumorigenesis are not fully understood. Here, we found that a member of the TNFα-induced protein 8 (TNFAIP8) family called TIPE2 (TNFAIP8-like 2) was significantly upregulated in murine intestinal tumors and in human colorectal cancer, and colorectal cancer with high expression of Tipe2 mRNA associated with reduced survival time of patients. Consistent with these findings, TIPE2 deficiency significantly inhibited the development of colorectal cancer in mice treated with azoxymethane/dextran sodium sulfate and in Apcmin/+ mice. TIPE2 deficiency attenuated the severity of colitis by successfully resolving and restricting colonic inflammation and protected colonic myeloid cells from death during colitis. Transplantation of TIPE2-deficient bone marrow into wild-type mice successfully dampened the latter's tumorigenic phenotype, indicating a hematopoietic-specific role for TIPE2. Mechanistically, restricting the expansion of Enterobacteriaceae/Escherichia coli (E. coli) decreased intestinal inflammation and reduced the incidence of colonic tumors. Collectively, these data suggest that hematopoietic TIPE2 regulates intestinal antitumor immunity by regulation of gut microbiota. TIPE2 may represent a new therapeutic target for treating colorectal cancer.


Assuntos
Colite , Neoplasias do Colo , Microbioma Gastrointestinal , Animais , Carcinogênese/genética , Colite/induzido quimicamente , Escherichia coli/metabolismo , Humanos , Inflamação/complicações , Peptídeos e Proteínas de Sinalização Intracelular/genética , Camundongos , Fator de Necrose Tumoral alfa/metabolismo
8.
J Immunol ; 204(8): 2122-2132, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-32188758

RESUMO

TNFAIP8-like 2 (TIPE2) is a negative regulator of immune receptor signaling that maintains immune homeostasis. Dysregulated TIPE2 expression has been observed in several types of human immunological disorders. However, how TIPE2 expression is regulated remains to be determined. We report in this study that the SCFß-TrCP E3 ubiquitin ligase regulates TIPE2 protein abundance by targeting it for ubiquitination and subsequent degradation via the 26S proteasome. Silencing of either cullin-1 or ß-TrCP1 resulted in increased levels of TIPE2 in immune cells. TAK1 phosphorylated the Ser3 in the noncanonical degron motif of TIPE2 to trigger its interaction with ß-TrCP for subsequent ubiquitination and degradation. Importantly, the amount of TIPE2 protein in immune cells determined the strength of TLR 4-induced signaling and downstream gene expression. Thus, our study has uncovered a mechanism by which SCFß-TrCP E3 ubiquitin ligase regulates TLR responses.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Ligases SKP Culina F-Box/metabolismo , Animais , Células Cultivadas , Células HEK293 , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Camundongos , Camundongos Endogâmicos C57BL , Células RAW 264.7 , Proteínas Ligases SKP Culina F-Box/genética , Transdução de Sinais/imunologia , Células THP-1
9.
Cell Mol Immunol ; 17(10): 1053-1062, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-31467414

RESUMO

Toll-like receptors (TLRs) are key pattern recognition receptors that mediate innate immune responses to infection. However, uncontrolled TLR activation can lead to severe inflammatory disorders such as septic shock. The molecular mechanisms through which TLR responses are regulated are not fully understood. Here, we demonstrate an essential function of S100A10 in TLR signaling. S100A10 was constitutively expressed in macrophages, but was significantly downregulated upon TLR activation. S100A10-deficient macrophages were hyperresponsive to TLR stimulation, and S100A10-deficient mice were more sensitive to endotoxin-induced lethal shock and Escherichia coli-induced abdominal sepsis. Mechanistically, S100A10 regulated macrophage inflammatory responses by interfering with the appropriate recruitment and activation of the receptor-proximal signaling components and eventually inhibited TLR-triggered downstream signaling. These findings expand our understanding of TLR signaling and establish S100A10 as an essential negative regulator of TLR function and a potential therapeutic target for treating inflammatory diseases.


Assuntos
Anexina A2/metabolismo , Infecções por Escherichia coli/imunologia , Infecções por Escherichia coli/metabolismo , Imunidade , Proteínas S100/metabolismo , Transdução de Sinais , Receptores Toll-Like/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Animais , Anexina A2/deficiência , Citocinas/biossíntese , Escherichia coli/fisiologia , Infecções por Escherichia coli/microbiologia , Humanos , Inflamação/patologia , Mediadores da Inflamação/metabolismo , Lipopolissacarídeos , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Fator 88 de Diferenciação Mieloide/metabolismo , Fagocitose/efeitos dos fármacos , Ligação Proteica , Domínios Proteicos , Proteínas S100/deficiência , Sepse/patologia , Receptor 4 Toll-Like/química , Receptor 4 Toll-Like/metabolismo
10.
J Environ Sci (China) ; 36: 152-62, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26456617

RESUMO

Arsenic (As) is one of the most toxic contaminants found in the environment. Development of novel detection methods for As species in water with the potential for field use has been an urgent need in recent years. In past decades, surface-enhanced Raman scattering (SERS) has gained a reputation as one of the most sensitive spectroscopic methods for chemical and biomolecular sensing. The SERS technique has emerged as an extremely promising solution for in-situ detection of arsenic species in the field, particularly when coupled with portable/handheld Raman spectrometers. In this article, the recent advances in SERS analysis of arsenic species in water media are reviewed, and the potential of this technique for fast screening and field testing of arsenic-contaminated environmental water samples is discussed. The problems that remain in the field are also discussed and an outlook for the future is featured at the end of the article.


Assuntos
Arsênio/análise , Monitoramento Ambiental , Água Doce/análise , Análise Espectral Raman , Poluentes Químicos da Água/análise
11.
Spectrochim Acta A Mol Biomol Spectrosc ; 136 Pt C: 1593-9, 2015 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-25459720

RESUMO

Surface-enhanced Raman scattering (SERS) has emerged as one of the most sensitive spectroscopic analysis methods for the detection of environmental contaminants in water, including perchlorate (ClO4(-)). However, as with other commonly used analytical techniques, analysis of realistic environmental samples by SERS presents a challenge due to complex chemical components coexisting in the samples. In this work, we investigated the influence of inorganic anions (particularly oxyanions) on SERS spectra of ClO4(-) using a cationic thiol modified silver nanofilm substrate (Cys-Ag/rCu). The results show that the anions present in the samples did not shift the ClO4(-) characteristic band positions, but did decrease signal intensities due to their competitive binding with the -NH3(+) groups of cationic thiol molecules immobilized on the substrates. The pH changes caused by both the dissociation of H2PO4(-) and the hydrolysis of HCO3(-) may also play a non-negligible role. The selectivity of the Cys-Ag/rCu substrate towards these anions was determined to be in the following order: ClO4(-)>SO4(2-)>HCO3(-), NO3(-)>Cl(-)>H2PO4(-), indicating preferential adsorption of ClO4(-) ions. In the solutions with multiple anions present, the ClO4(-) SERS spectra were affected simultaneously by all the coexisting anions. Calibration curves with very good linear relationships were successfully obtained, demonstrating the great potential of quantitative detection of aqueous ClO4(-) in the matrix.

12.
J Colloid Interface Sci ; 377(1): 51-7, 2012 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-22494687

RESUMO

Surface-enhanced Raman scattering (SERS), as one of the most sensitive spectroscopic analysis methods, has been investigated extensively for the detection of environmental contaminants in recent years. In this work, we reported the new development of robust SERS substrates for rapid and sensitive sensing of aqueous perchlorate, a widespread environmental contaminant. The fabrication of the substrates consisted of two simple steps: (a) formation of Ag nanofilms on Cu and surface-roughened Cu foils (Ag/Cu and Ag/rCu nanofilms) using a controllable and inexpensive one-step electroless plating process, and (b) surface modification of the Ag nanofilms with cysteamine (Cys) self-assembly monolayer (SAM) (Cys-Ag/Cu and Cys-Ag/rCu substrates). Due to the strong affinity of -NH(3)(+) groups of the Cys molecules for perchlorate ions, the rapid SERS detection of perchlorate has been realized with a limit of detection (LOD) down to 5 µg L(-1) (ppb) for aqueous samples without need for drying. Various calibration curves with good linear relationships were obtained, indicating the quantification potential of SERS analysis of perchlorate using these new substrates. It was found that the neutral pH yielded the maximum SERS signals, and 85% of original sensitivity was remained in 5 days of storage time in the air, indicating the substrates are fairly stable. Within 10 regeneration-reuse cycles, the SERS signals of perchlorate kept in the range of 85-105% of the original value, verifying its reusability.


Assuntos
Nanopartículas Metálicas/química , Percloratos/análise , Prata/química , Tamanho da Partícula , Análise Espectral Raman , Propriedades de Superfície
13.
Nanoscale Res Lett ; 6(1): 263, 2011 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-21711772

RESUMO

Surface-enhanced Raman scattering (SERS) has recently been investigated extensively for chemical and biomolecular sensing. Multilayer silver (Ag) nanofilms deposited on glass slides by a simple electroless deposition process have been fabricated as active substrates (Ag/GL substrates) for arsenate SERS sensing. The nanostructures and layer characteristics of the multilayer Ag films could be tuned by varying the concentrations of reactants (AgNO3/BuNH2) and reaction time. A Ag nanoparticles (AgNPs) double-layer was formed by directly reducing Ag+ ions on the glass surfaces, while a top layer (3rd-layer) of Ag dendrites was deposited on the double-layer by self-assembling AgNPs or AgNPs aggregates which had already formed in the suspension. The SERS spectra of arsenate showed that characteristic SERS bands of arsenate appear at approximately 780 and 420 cm-1, and the former possesses higher SERS intensity. By comparing the peak heights of the approximately 780 cm-1 band of the SERS spectra, the optimal Ag/GL substrate has been obtained for the most sensitive SERS sensing of arsenate. Using this optimal substrate, the limit of detection (LOD) of arsenate was determined to be approximately 5 µg·l-1.

14.
Anal Chim Acta ; 692(1-2): 96-102, 2011 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-21501717

RESUMO

Surface-enhanced Raman scattering (SERS) has recently emerged as a promising method for chemical and biomolecular sensing. SERS quantification analysis of arsenate (As(V)) was investigated using multilayer Ag nanofilms deposited on glass slides as SERS-active substrates (Ag/GL substrates) by an electroless deposition process. The As(V) limit of detection (LOD) was determined to be ∼5 µg L(-1) or lower with or without coexisting multiple background electrolytes (Na(+), K(+), Ca(2+), Mg(2+), Cl(-), NO(3)(-), SO(4)(2-) and H(2)PO(4)(-)). The presence of the background electrolytes at low concentrations was observed to enhance the SERS sensitivity of the substrate towards As(V) more than twofold. Standard calibration curves were prepared in the absence and presence of the background electrolytes. Excellent linear relationships between the peak heights of the As(V) SERS band at ∼780 cm(-1) and the As(V) concentrations were obtained in a concentration range of 0-250 µg L(-1). The selectivity of the Ag nanofilm towards oxyanions was examined to be in the order of As(V)≫phosphate≫nitrate, sulphate. A low sample-to-sample relative standard deviation (RSD) of 5.2% was also determined, suggesting the Ag/GL substrate was uniform and highly reproducible. Experimental results indicated that the SERS method could be used for quantitative analysis of As(V) in groundwater samples.


Assuntos
Arseniatos/análise , Nanoestruturas/química , Prata/química , Análise Espectral Raman/métodos , Arseniatos/química , Calibragem , Eletrólitos/química , Reprodutibilidade dos Testes , Propriedades de Superfície , Água/química
15.
J Hazard Mater ; 167(1-3): 1215-21, 2009 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-19269090

RESUMO

Arsenic species such as arsenite [As(III)] and arsenate [As(V)] are known human carcinogens. Though lots of metal oxide adsorbents have been developed for removal of As(V), they are much less effective for As(III) adsorption. In this study, various inorganic-organic hybrid adsorbents bearing thiol groups have been prepared by modifying activated alumina (AA) with mercaptopropyl-functionalized silica under different experiment conditions. Raman spectra demonstrated the successful functionalization of AA and verified the formation of As-S complexes after As(III) adsorption. Batch experiments were applied to evaluate the As(III) adsorption performance of the hybrid adsorbents. Compare with AA, the hybrid adsorbents exhibited enhanced adsorption abilities for As(III) due to the introduction of thiol groups, and as the thiol loading increased, the uptake of As(III) increased. Experimental results indicated that the hybrid adsorbents still maintained the merit of the AA for As(V) adsorption. Based on the results, one hybrid adsorbent referred to as BL(AA)(30)(MPTS)(3.3) has been selected by consideration of not only the adsorption capacity but also its environmentally friendly and cost-effective production. The investigation has indicated that the hybrid adsorbents are very promising for As(III) removal from water.


Assuntos
Óxido de Alumínio/química , Arsenitos/isolamento & purificação , Compostos de Sulfidrila/química , Purificação da Água/métodos , Adsorção , Poluentes Químicos da Água/isolamento & purificação
16.
Toxicol Lett ; 175(1-3): 57-63, 2007 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-17980976

RESUMO

Inorganic arsenicals such as arsenite [As(III)] and arsenate [As(V)] are known human carcinogens. The interactions of As(III) with sulfhydryl groups of peptides and proteins are very important mechanisms for the toxicity and metabolism of arsenic in mammals. The present study was designed to explore the application of electrochemical scanning tunneling microscopy (ECSTM) for determining the configuration of complexes formed between As(III) and glutathione (GSH) in solution. The configurations of GSH and As(III)-GSH complexes were imaged on the Au(111) surface in a 0.1M NaClO(4) solution. High-resolution STM images revealed that the As(III) and GSH formed a As(GS)(3) complex. The orientation and packing arrangement of the molecular adlayers were also seen clearly from the images and molecular models constructed using the Chemical Window and Hyperchem software package. The configuration of GSH in As(GS)(3) was found to be different from single GSH. UV-vis spectra indicated the emergence of an absorption shoulder in the range 250-280 nm for the aged As(III)-GSH solution, compared to the spectra of single As(III) and GSH solutions. MS spectra showed the presence of a new peak for the aged As(III)-GSH solution at m/z 992 corresponding to the As(GS)(3) complex. The results obtained by the last two methods verify the compound imaged by using STM is As(GS)(3). Studying the interactions of As(III) and peptides and knowing the structure details of the complexes are a significant step toward a better understanding of the interactions between As(III) and proteins and the mechanism of arsenic toxicology. ECSTM will be especially valuable for the determination of competitive interactions of GSH and proteins with arsenic.


Assuntos
Arsenitos/química , Glutationa/química , Microscopia de Tunelamento , Espectrometria de Massas por Ionização por Electrospray , Espectrofotometria Ultravioleta
17.
Anal Chem ; 79(10): 3615-22, 2007 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-17441685

RESUMO

Electrochemical scanning tunneling microscopy (ECSTM), ion chromatography (IC), and electrospray ionization-mass spectrometry/mass spectrometry were applied to investigate the interactions between arsenite [As(III)] and carbonate and arsenate [As(V)] and carbonate. The chemical species in the single and binary component solutions of As(III), As(V), and carbonate were attached to a Au(111) surface and then imaged in a 0.1 M NaClO4 solution at the molecular level by ECSTM. The molecules formed highly ordered adlayers on the Au(111) surface. High-resolution STM images revealed the orientation and packing arrangement of the molecular adlayers. Matching the STM images with the molecular models constructed using the Hyperchem software package indicated that As(III) formed two types of complexes with carbonate, including As(OH)2CO3- and As(OH)3(HCO3-)2. No complexes were formed between As(V) and carbonate. IC chromatograms of the solutions revealed the emergence of the new peak only in the aged As(III)-carbonate solution. MS spectra showed the presence of a new peak at m/z 187 in the aged As(III)-carbonate solution. The results obtained with the three independent methods confirmed the formation of As(OH)2CO3-. The results also indicated that As(OH)3 could be associated with HCO3- through a hydrogen bond. The knowledge of the formation of the As(III) and carbonate complexes will improve the understanding of As(III) mobility in the environment and removal of As(III) in water treatment systems.


Assuntos
Arsenicais/análise , Microscopia de Tunelamento/métodos , Arseniatos/análise , Arsenitos/análise , Carbonatos/análise , Cromatografia , Poluentes Ambientais/análise , Software , Espectrometria de Massas por Ionização por Electrospray , Purificação da Água/métodos
18.
Langmuir ; 22(8): 3640-6, 2006 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-16584238

RESUMO

The adsorption of 4,4'-bipyridine (BiPy) on Cu(111) has been investigated in 0.1 M HClO4 by cyclic voltammetry, electrochemical scanning tunneling microscopy (STM), and surface-enhanced infrared adsorption spectroscopy (SEIRAS). Cyclic voltammetry showed the double layer region extending from -0.2 to 0.26 V and a pair of redox waves superposing on hydrogen evolution wave at more negative potentials. Diprotonated BiPy, BiPyH2(2+), is adsorbed flat on the Cu(111) (1 x 1) surface and forms a well-ordered monolayer with a (3 x 4) symmetry in the double-layer potential region. At more negative potential, BiPyH2(2+) is reduced to its monocation radical, BiPyH2(*+), and forms another well-ordered structure in which the radicals are stacked in molecular rows with a face-to-face self-dimer as the building unit. The SEIRA spectra of both BiPyH2(2+) and BiPyH2(*+) are dominated by gerade modes which should be IR-inactive for the centrosymmetric species. The breakdown of the selection rule of IR absorption is ascribed to the vibronic coupling associated with charge transfer between BiPyH2(2+) and the surface and between the radicals.

19.
Langmuir ; 20(18): 7360-4, 2004 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-15323474

RESUMO

Chiral modifiers have gained much attention because they can induce high enantioselectivity on reactive metal surface in heterogeneous enantioselective catalysis. The high enantioselectivity is attributed to that the chirality of modifiers is bestowed onto the metal surface upon adsorption. Much study on the adsorption of modifiers on metal surface has been performed in an ultrahigh vacuum. In this paper, the adsorption of tartaric acid on Cu(111) has been studied by electrochemical scanning tunneling microscopy (STM) in aqueous solution. It is found that (R,R)-tartaric acid and (S,S)-tartaric acid can form a well-ordered adlayer on the Cu(111) surface with a (4 x 4) symmetry. A dimeric structure is proposed in the temporary model from STM observation.

20.
Anal Chem ; 76(3): 627-31, 2004 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-14750856

RESUMO

Scanning tunneling microscopy (STM) has been employed to investigate the chirality of monophosphine compounds that are highly efficient chiral ligands in transition-metal-catalyzed organic transformations. The absolute configuration of 1-(2-diphenyphosphino-1-naphthyl)isoquinoline enantiomers with axial chirality was discriminated directly by the "marker" group, PPh(2) substitutes. Although the two enantiomer molecules adsorb on a Cu(111) surface and form well-defined (4 x 4) structures, the positions of PPh(2) substitutes in the molecular adlayers are different. The mirror symmetry between two adlayers is demonstrated. On the basis of STM results, structural models are proposed to interpret the chiral adsorption. The results presented here supply a straightforward method for axial chirality analysis in adsorbed adlayers by STM.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...